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Abstract— Stippling is an artistic rendering technique where
shading and texture is given by placing points or stipples on
the canvas until the desired darkness is achieved. Computer-
generated stippling has focused on producing high quality 2D
renditions for print media, while stippling of 3D models in
animations has received little attention. After describing current
advances in stippling for print media and real-time rendering, we
present an approach to produce animations of 3D models using
stippling as a rendering style. In our approach, we ensure frame-
to-frame coherence as the model moves and shading changes
over time, by attaching stipple particles to the surface of the
model. We present a point hierarchy, used to control the stipple
density during rendering, and solutions for rendering animated
and static models using conventional and vertex-programmable
graphics hardware.

I. I NTRODUCTION

Stippling is a painting technique where the artist renders an
image using single dots, also called stipples. Almost any model
from nature and human manufacture can be rendered using
stipples. In scientific illustration (for example in the natural
sciences or in archaeology), stippling is used in combination
with other rendering techniques to convey the shape, texture
and surface material of the objects being depicted. Figure 1
shows a vase that is rendered by an artist using the stippling
style. A closer look at the image reveals that darker areas
are more densely stippled than lighter areas, and that stipples
have more or less a constant size. Stippled renditions do not
scale well, specially when the image is drastically reduced
or looked at from a distance, because the stipples become too
small and blend with each other in the image. While stippling,
the artist must take care to judge the proper scale and spacing
of individual stipple dots, since the density of the dots conveys
both shape and tone.

The original work for computer-generated stippling focuses
on the creation of high-quality renditions of 2D images at high
resolutions. These renditions are normally one-time produc-
tions intended for printed media. Image-based approaches such
as that of Deussen et al. [2] and Secord [10] provide interactive
and automatic tools to obtain high quality renderings in the
stippling style for single renditions (see Figure 2). These
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Fig. 1

ON THE LEFT, ”I NDIAN POTTERY” BY RON C. GUTHREY. ON THE RIGHT,

A DETAIL FROM THE SAME IMAGE, WHERE THE INDIVIDUAL STIPPLE

DOTS CAN BE MORE CLEARLY APPRECIATED.

techniques have focused on the even distribution of a number
of input dots using Voronoi relaxation.

In this article we describe our approach to produce computer
animations of 3D models in the stippling style. There are sev-
eral issues that make stippling for animations a hard topic for
graphics researchers. The first issue is a conceptual one, and
refers to the question of how the stipples in an animation of a
stippled object should behave. Since the stippling technique is
originally meant to produce single images at a certain scale,
it is not clear how the stipples should react to scaling and
changes in shading through illumination. Ideally, we would
like to obtain stippled renditions of a model which can be
arbitrarily scaled, but this can be an elusive goal. Another
important issue for stippling is how to maintain even point
distributions as the viewing parameters (viewpoint, illumina-
tion, viewing distance) change, or even as the model itself
changes. Our contribution to this area is the introduction of a
point hierarchy that can be used within a rendering procedure
to produce view-dependent, frame-coherent animations in the
stippling style for static and animated 3D models1.

In the next section we describe our approach to obtain
frame-coherent stippling. In Section III we review related

1The complete animations are available under http://isgwww.cs.
uni-magdeburg.de/∼oscar/

http://isgwww.cs.uni-magdeburg.de/~oscar/
http://isgwww.cs.uni-magdeburg.de/~oscar/
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Fig. 2

ON THE TOP, A STIPPLED IMAGE PRODUCED BYVORONOI RELAXATION,

ON THE BOTTOM A DETAIL OF THE GRASS-HOPPER’ S HEAD (IMAGES BY

DEUSSEN ET AL.[2])

work on computer-generated stippling. Section IV explains in
detail how the point hierarchy is created. Section V describes
how the point set is used for rendering in the stippling style
in conventional graphics hardware, the hardware-accelerated
implementation, and stippling of animated models. In Section
VI we discuss our results and the open problems.

II. FRAME-COHERENT STIPPLING

As a starting point we may notice that stippling and most
other artistic drawing styles cannot be used in an animation by
simply putting together a sequence of independently rendered
images without introducing noise during the animation. While
artists produce animations in the hatching style by redrawing
each frame and pasting them together in a sequence, it would
be useless to try the same technique with stippling because
we would have stipples randomly appearing and disappearing
from the image. This effect would not be appealing to the
viewer and it could even become annoying after a short while,
depending on the amount of noise perceived. This is why we
advocate the implementation of stippling in a frame-coherent
way at the level of each individual stipple. Under this view,
a stipple should be attached to the surface of the model and
should move along with the model, in other words, it should
behave like a texture on the surface of the model. In addition,
the stippling density should smoothly adapt to changes in
illumination, i.e. it should increase when shading becomes
darker and decrease when shading is lighter. Since stipples
are not allowed to move, stipples can only blend in or out
of the images. Finally, we want to keep appropriate spacing
between rendered stipples, trying to avoid the formation of
regular patterns or irregular grouping of points as much as
possible.

Our frame-coherent stippling system is implemented by
defining a point hierarchy which is fixed to the surface of a
model and a rendering algorithm that uses this point hierarchy

to produce stippled renditions in a way that satisfies the
conditions previously mentioned.

To achieve frame-coherence, we have taken the concept
of particle systemsfrom painterly rendering and artistic
rendering, where particles,graftals [7] or geograftals[4], are
fixed on the surface of 3D models. In principle, we consider
each vertex of the input model as a particle that indicates the
location of a potential stipple. Because each point is attached
to a specific location on the surface of the model, points move
along with the model as the model is moved in the scene. This
provides the frame-coherence effect at the stipple level.

Fig. 3

ON THE LEFT, THE STANFORD BUNNY IN THE STIPPLING STYLE,

OBTAINED BY FRAME-COHERENT STIPPLING. ON THE RIGHT, A DETAIL OF

THE BUNNY’ S HEAD.

In addition, we control the stipple distribution on the surface
of the model so that it dynamically adapts to changes in the
shading, allowing dark areas to be filled with more stipples
than light shaded areas (see Figure 3). We do this by creating
a hierarchy of points which is used to determine which points
should appear or disappear first from the images. Stippling is
not scalable per se, but 3D models are, so we use the point
hierarchy to control the stipple density according to changes
in scale and viewing distance as well (see Figure 4).

The point hierarchy is generated in the same way as vertex
hierarchies for mesh simplification and Level-of-Detail [3], [6]
are, i.e., the edges of a mesh are subsequently refined and a
vertex hierarchy is produced as a result. In fact, Cornish et
al. [1] introduced the idea of applying mesh simplification in
a view-dependent real-time NPR system and we incorporated
this as part of our system. Vertices which are lower in the
hierarchy, appear last and vanish first than vertices which are
higher in the hierarchy. We extended this idea by adding a
mesh subdivision stage which we use to generate more stipples
when needed. After each simplification and each refinement
step, the resulting vertex is assigned a list of neighbours
(alternatively, a relevance value) that we use to decide which
stipples should be included in a particular rendition. The initial
approach for frame-coherent stippling was presented in [8],
where a model was refined as needed as part of an off-line
animation. In this article, we have extended this approach to
include animated models and real-time rendering.

III. R ELATED WORK

The first stippled renditions were presented by Winkenbach
and Salesin for parametric surfaces using randomness to
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distribute the points on the surface of a model. Deussen et
al. [2] and Secord [10] obtain high-quality stippled images
using dithering and relaxation of Voronoi diagrams and taking
greyscale images as input (recall Figure 2). While these
images are visually attractive and the stipple dots are carefully
distributed, it is not possible to use these approaches to build a
noise-free animation sequence, because each frame is obtained
by iterative Voronoi relaxation of existing particles and the
stipple distribution obtained in one frame is not guaranteed
to correspond with the one obtained in the next frame. A
question that arises when we look at existing works for 2D
stippling and try to extrapolate it to 3D models is whether it
is possible to obtain appropriately spaced particle- or stipple
distributions such as those obtained in image-based stippling
while providing frame-coherence at the particle level. An
interesting proposal in this respect is that of Secord et al. [11],
where frame-coherence is pursued on the image plane, not in
object space (i.e. the rendering particles are not attached to the
model’s surface, but to the image). Their results show that by
enforcing frame-coherence in this way, stipple particles float
(or swim) on the surface of the object as it moves or as shading
changes. This effect conveys a vibrating look to the animations
and is different from the effect that we want to achieve, where
particles move along with the model as the model moves.

Recent improvements in texture mapping hardware permit
real-time frame-coherent rendering in pen-and-ink styles using
stroke textures. When rendered at an appropriate resolution,
stroke textures can be used to emulate stippling and adapt
to changes in illumination at a given viewing distance. The
problem with textures, however, is that it is hard to control
the stipple shape in such a way that it is always projected as a
circular dot on the screen. We avoid this problem by drawing
each stipple explicitly with point primitives.

IV. GENERATING THE POINT SET HIERARCHY

In this section we describe the properties of the point set
hierarchy, and how it is generated. In section V, we describe
how the hierarchy is used to produce stipple renderings using
the point hierarchy.

When stippling, it is important to obtain regular point
distributions on the final rendition. According to Hodges [9],
artists create stippled drawings by first placing some groups of
dots in a region of interest and then filling in until the desired
tone is achieved. Our point hierarchy is defined in such a way
that spacing of stipples is taken into account when adding and
removing stipples: new stipples (which are inserted lower in
the particle hierarchy) are placed at locations roughly in the
middle of existing stipples. Alternatively, when stipples are
removed from the surface of a model, stipples at the bottom
of the hierarchy are the ones that vanish first.

Figure 4 illustrates how stipples in the higher levels of the
hierarchy are sparsely distributed, and how new stipples are
added between existing ones. In the left side of the image, we
can observe how distance values can be assigned to the stipples
according to their hierarchy level. This distance is a key value
used to determine whether a stipple should be rendered or not.

In our system we follow the strategy proposed by Hodges
by creating a hierarchy of vertices in 3D space which represent

Level 2

Level 3

Level 1

R=1.0

R=0.5

R=0.25

Simplification

Subdivision

Fig. 4

POINT HIERARCHIES FOR THE ONE- (LEFT), TWO- (MIDDLE ) AND THREE

DIMENSIONAL CASES (RIGHT). POINTS AT THE LOWER LEVELS OF THE

HIERARCHY HAVE SMALLER RADIUS VALUES, WHICH DETERMINES THEIR

RELEVANCE IN THE HIERARCHY. FOR 3D MODELS, A CONTINUOUS LEVEL

OF DETAIL IS CREATED USING MESH SIMPLIFICATION AND SUBDIVISION.

stipple locations on the surface of the model. Depending on
the viewing distance and the number of polygons in the input
model, the number of vertices of the input model might not
be enough to cover darks areas. To fill these areas, more
vertices are generated on the surface of the model by mesh
subdivision. In other cases, the number of vertices in the input
model is so high that we have to discard many of them to
produce a light shading tone. To discard vertices from a highly
tessellated model we perform mesh simplification. To ensure
that the appropriate level of detail is obtained at most viewing
ranges, we mix mesh simplification and mesh subdivision
in a preprocessing stage to provide seamless levels of detail
regardless of the resolution of the input model (see Figure 4,
right). Vertices at the top of the hierarchy are the initial group
of dots spatially distant from each other; the vertices down
the hierarchy fill-in the space between existing vertices, so
that new stipples always come up to fill-in uncovered regions
of the canvas until the desired tone is achieved.

To generate the point hierarchy the system does the follow-
ing steps:

1) Compute a connectivity graph to operate on the input
polygonal mesh.

2) Apply a randomize phase on the vertices of the input
mesh to reduce the presence of regular patterns in the
stipple distribution (see Section IV-E).

3) Perform mesh simplification on the input mesh, creating
a hierarchy for the vertices in the input mesh.

4) Perform mesh subdivision on the input mesh, up to
a desired level of detail, or a desired point count,
expanding the existing point hierarchy with the new
vertices.

A. Setting up the connectivity graph

As a setup stage, a connectivity graph based on the input
polygonal mesh is created, which contains information about
the connections between vertices, edges and faces of the
model, as well as the vertices positions in object space.
This information is used for mesh simplification, subdivision,
randomization and vertex projection. We consider each vertex
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to be a particle for potential rendering, so the initial vertex
distribution is the collection of vertices of the input mesh.

B. Mesh Simplification

In mesh simplification we create a vertex hierarchy by
applying a series of edge collapse operations until the model is
simplified to a few vertices. The operator that we use for mesh
refinement is a variant of theedge collapse(ecol) introduced
by Hoppe [3] where one of the vertices is removed (see
Figure 5, top).

V1

V2

Vn

Ecol

Fig. 5

TOP: THE EDGE COLLAPSE OPERATION USED IN MESH

SIMPLIFICATION [3]. BOTTOM: WIREFRAME VIEW OF THE ORIGINAL

BUNNY MODEL (LEFT) AND THE MODEL AFTER A SERIES OF

SIMPLIFICATION STEPS(RIGHT).

By performing mesh simplification we can take models of
complex geometry (like horses, Stanford bunnies or dragons)
and render them with few stipples by using the vertices at the
top of the hierarchy (see Figure 5, bottom).

C. Hierarchical Subdivision

We generate a hierarchy by subdividing (refining) an input
3D model iteratively until the desired number of vertices in
the model has been reached, or when the longest edge in the
refined model falls under a certain threshold in object space.

The operator that we use for mesh subdivision is an edge-
split that creates a point around the middle of two vertices
of the edge to be split (see Figure 6, top). At each refinement
step, the longest edge in object space is subdivided. We always
take the longest edge to avoid creating extremely thin triangles,
which would appear if only a specific region of a model
is refined. Each vertex obtained by subdivision indicates the
location of a new stipple, and its neighbours are included in
the list of relevant neighbours for use in rendering. Figure 6
(bottom) shows a wireframe view of the teapot before and
after mesh refinement.

Refine
Vn

Fig. 6

TOP: THE REFINEMENT OPERATION USED IN MESH SUBDIVISION.

BOTTOM: WIREFRAME VIEW OF THE ORIGINAL TEAPOT MODEL(LEFT)

AND THE MODEL AFTER A SERIES OF REFINEMENT STEPS(RIGHT).

D. Defining the Point Set Hierarchy

Since a stipple covers an area of influence delimited by the
stipples in its neighbourhood [2], [10], we define a relevance
function where a particle is drawn depending on the desired
darkness at the vertex and the screen-space distances between
the vertex and a group of relevant neighbours (see section V-
A). The list of relevant neighbours for a vertex is saved after
applying either the edge-split or the edge-collapse operators.
In addition, we compute a radius value as the average of the
distance to the relevant edges, which is used for real-time
rendering. Figure 7 shows the relevant edges and the definition
of the radius for a given node.

Vn Vn

Set 
Radius

Fig. 7

THE VERTICES CONNECTED TO A POINT AFFECTED BY AN EDGE

COLLAPSE OR AN EDGE SPLIT ARE SAVED IN THE LIST OF RELEVANT

NEIGHBOURS OF THE RESULTING VERTEX, AND DETERMINE THE RADIUS

ASSOCIATED WITH THE POINT.

Since all vertices in the point hierarchy lie on the surface of
the input model, we can define a mapping between each vertex
in the hierarchy and the polygon in the input model where the
vertex lies. We do this by defining the barycentric coordinates
of the vertex with respect to the corresponding face in the
model (which we call the host face), and save this information
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in the vertex. This is used for animated stippling. Last but not
least, each vertex is assigned a normal which can be obtained
either by interpolating the normals of the neighbouring vertices
(for gouraud shading) or by consulting the normal of the host
face (for flat shading). In sum, after the mesh simplification
and subdivision stages have taken place, each point has the
following information:

• Position in 3D space.
• Indexed list of relevant neighbours or the radius value for

real-time rendering.
• Barycentric coordinates and index of the host face in the

input model.
• Normal vector.

Using this scheme, points with shorter edges (or shorter
radius) are drawn only after points with larger edges (or larger
radius) have been drawn, assuming these points lie on an
evenly shaded surface. If this is not the case, the rendering
algorithm determines for each point the required distance that
will allow it to show up in the image, depending on the
desired darkness at the stipple’s position. Since both mesh
simplification and subdivision are driven by spatial criteria
(closest edges are simplified first, and new points are placed
roughly in the middle of existing points), points down the
hierarchy appear or vanish between existing points when
rendering.

E. Improving the stipple distribution

The distribution of vertices in the original model is most
of the times quite regular. This becomes noticeable when we
render each vertex as a stipple and is a problem because this
introduces linear patterns which are not desirable from an
esthetic point of view. In addition, our subdivision operator
also tends to generate linear point distributions, since it creates
vertices along existing edges of the model.

To reduce the presence of these patterns, ”randomize and
project” operations are applied to the vertices of the input
model before proceeding to mesh simplification and to the
vertices generated by mesh subdivision.

1) Randomization: The randomize operator receives as
input the vertex to be moved and the set of faces sharing the
vertex. The vertex is displaced within the region enclosed by
these faces, so we first select a neighbouring face at random
and then we displace the vertex to a point in this face which
falls within a range that covers a small region (user-defined)
between the input vertex and the other vertices of the face (see
Figure 8, top). The region cannot be the whole face, because
we could displace the vertex to a position too close to the
other vertices and we would generate thin polygons, which
we want to avoid in general.

Figure 8 (bottom) illustrates the effect of the randomize
operator on the overall stipple distribution. The image on the
left shows a point distribution obtained by applying only the
subdivision operator on a sphere, where some stipples are
arranged in linear distributions. The image on the right shows
the stipple distribution obtained when the randomize operator
is applied after each subdivision.

V1
Randomize

Vn

Fig. 8

TOP: THE RANDOM OPERATOR DISPLACES THE INPUT VERTEX TO A NEW

LOCATION WITHIN THE NEIGHBOURING FACES. BOTTOM: AN EXAMPLE

OF THE STIPPLE DISTRIBUTION ON A SPHERE BEFORE AND AFTER

RANDOMIZATION .

2) The Projection Operator:A randomized vertex should
lie on the surface of the input model after randomization,
because we perform hidden surface removal using thez-buffer.
However, the mesh that connects the randomized vertices has a
different geometry than the mesh of the input model (because
their vertices do not coincide) so we need to project the
randomized vertices to the surface of the original model. The
only case where a randomized or a newly created vertex is
guaranteed to lie on the surface of the input model is when
all the vertices of the polygon fan around it are coplanar and
lie on the surface of the model. Otherwise, the vertex has to
be projected back on the surface using a projection operator.

Project

Vn

Vn

Fig. 9

THE PROJECTION OPERATOR TAKES A RANDOMIZED VERTEX AND

DISPLACES IT TO THE SURFACE OF THE INPUT MODEL. IN THIS

ILLUSTRATION , BLACK LINES REPRESENT THE INPUT MODEL AND THIN

LINES REPRESENT THE PARTICLE MESH.

The projection operator (see Figure 9) defines a projection
ray departing from the input vertex towards the direction of the
sum of normals of the vertices connected to the input vertex.
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After that, the faces of the input model which are connected
to the neighbor vertices are tested for intersection with the
projection ray. If more than one intersection is found, we select
the one that lies closest to the input point and which is not
invalid. An invalid projection is one that creates a fold in the
particle mesh, which can occur if the vertex is projected past
an edge that connects two neighbours of the input vertex.

V. USING THE POINT SET HIERARCHY

A. Rendering in conventional graphics pipelines

A stippled rendition is produced using a 3D model and a
set of points in 3D space. We render the model with a small
offset behind the point primitives and use thez-buffer for
hidden-surface removal. The buffer is initialized by rendering
the original object’s faces in a pass before the actual stippling.
Color writes can be disabled for this pass, to save bandwidth.
However, it may be desirable for objects to have a base color
differing from the background. This can easily be done by
using an arbitrary color for this pass. Figure 10 illustrates this
approach. On the top left, we see the teapot model rendered
in the flat shading style, On the bottom left, we see the model
rendered in the wireframe style. On the right side of the
image, we have the teapot model and the vertices of the teapot
rendered as stipples on top of the model.

Fig. 10

THE FRAME-COHERENT STIPPLING EFFECT IS OBTAINED BY RENDERING A

SET OF POINTS IN3D SPACE ON THE SURFACE OF A3D MODEL, USING

THE z-BUFFER FOR HIDDEN-SURFACE REMOVAL AND SETTING A SMALL

OFFSET WHERE THE FACES OF THE MODEL LIE A BIT BEHIND THE POINT

PRIMITIVES FROM THE VIEWER’ S POINT OF VIEW.

For the actual stippling, we traverse the complete point hi-
erarchy and decide which stipple should be drawn by applying
a rendering test on each potential stipple. The rendering test
works as follows: The screen-space projection of every edge
in the list of neighbouring nodes is measured in pixels and
compared against a dynamically computed threshold value. If
a connected edge falls below the threshold value, the stipple is
unset. If all edges exceed the threshold, the stipple is set to be
drawn. The threshold value is computed for each particle as a

function of the illumination model, the normal of the vertex
and the viewing parameters.

In our rendering system we have stipples of variable point
size which goes from zero to a user-defined maximum point
size. We use OpenGL smoothing for points, blending and
multipass antialiasing to ensure that stipples are smoothly
introduced in or removed from the images during animation.
The size of the stipple is defined as a function of the threshold,
the radius of each individual stipple and a user-defined fade-in
factor which defines how fast a stipple fades in or out of the
image. We also considered defining the stipples as being set
or unset after a certain threshold is exceeded, and smoothly
varying the point size across frames to fade-in or out the
stipples. This solution however produced a lag in shading,
which became more apparent as the model moved rapidly,
and was thus discarded.

In Figure 11 we present frames taken from the stippling
animations of static models, where models are shown under
different conditions of lighting, viewing and model orientation.
The complete animations are available under http://isgwww.cs.
uni-magdeburg.de/∼oscar/.

The preprocessing stage takes about 5 minutes for the
system to create a 60,000 point hierarchy for the teapot, which
includes mesh simplification and subdivision. For the brain it
takes about 18 minutes to create a 144,000 point hierarchy,
which is entirely spent on simplification. Rendering a model
with 60,000 points takes about 2.5 seconds. In average, 700
frames of an off-line animation are produced in one hour for
a model with 40,000 points on a SGI Onyx2 Infinite Reality,
with 2 195MHz MIPS R10000 processors and 900MB RAM.

The animations presented show smooth transitions between
frames, and how stipple dots emerge and disappear between
existing dots, yielding an interesting visual effect, as if sand
particles emerged or disappeared from the surface of the
model, but on the other hand, they remain attached to the
surfaces as the model moves.

Having a fixed amount of stipples available for a model has
the drawback that some areas loose darkness (i.e. the stipple
density on the image decreases) after the maximum number
of stipples for that region has appeared, which occurs when
the user zooms at the model. If it is required that shading is
always guaranteed, it is possible to refine the model further
during interaction, but this is only recommended for off-line
rendering, because of the overhead implied by having to refine
a highly tessellated mesh.

B. Hardware-accelerated rendering

Rendering a stippled drawing from the point hierarchy is
a rather time-consuming task, as described in the previous
section. On the other hand, the rendering algorithm can be
subject to parallelization. In this section, we describe an imple-
mentation that can be processed in parallel by programmable
vertex processing hardware [5].

Such hardware allows the user to control the processing of
each submitted vertex with avertex program. However, each
vertex is processed independently of the others. Only data
submitted with this vertex is accessible in the vertex program.

http://isgwww.cs.uni-magdeburg.de/~oscar/
http://isgwww.cs.uni-magdeburg.de/~oscar/
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Fig. 11

FRAMES FROM OUR STIPPLED RENDITIONS OF STATIC MODELS, SHOWING CHANGES IN LIGHTING AND VIEWPOINT.

That means we can not use a literal transcription of the stipple
rendering algorithm as described in the previous section,
because it would require access to each vertex’ neighbours. For
this reason, we developed a simplified version of the algorithm
which still yields satisfying results.

The algorithm’s main idea is to reduce the calculations
based on neighbour’s distances to a single scalar value, the
stippleradius computed as the Point Set Hierarchy is created,
as described in Section IV-D. This value is stored for each
vertex, along with its position and normal. In the vertex pro-
gram, athresholdvalue is computed based on distance, slope,
and lighting. We vary the point size based on the difference
of threshold and radius to achieve a smooth introduction and
fading of stipples with the same function used for conventional
graphics hardware (see previous Section).

For maximum efficiency, we store the vertex array in video
memory. An optimization we have not yet employed is limiting
the number of potential stipples tested for each object. This
could be achieved by estimating the number of stipples based
on the area of the object’s screen-space projection. However,
the depth-complexity of the object would have to be taken into
account, too. Furthermore, it is difficult to estimate the actual

lighting so the darkest tone would have to be assumed.
Using this version of the algorithm, we can display a model

with 120,000 stipples at 60 fps on a NVIDIA GeForce 4.

C. Stippling Animated Models.

Most of the non-photorealistic techniques which are applied
to models in 3D space work well for static models, but
relatively few work has been done to apply non-photorealistic
scenes for animated models. The challenge lies again in scaling
and in defining how non-photorealistic particles or strokes
should adapt to changes in the shape of a polygonal mesh.
We have found that stippling as a rendering style is well
suited for producing computer animations, because the point
hierarchy described above can be used as an elastic texture
which is attached to the surface of the model (see Figure 14).
In the following discussion we describe animated stippling, a
technique that allows us to use the point hierarchy for animated
models.

For mesh morphing we take two polygonal meshes of the
same topology with vertices at different locations in object
space. These meshes are used to construct an animation by
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transforming one mesh into the other. The animation is typ-
ically constructed by performing linear interpolation between
the two vertex sets of the key meshes for every frame of
the animation. Alternatively, an animation can be created by
having as input a polygonal mesh and a time varying vector
field which indicates the direction of displacement for the
vertices in the mesh. Regardless of the technique chosen to
produce the animation, the main requirement for producing
animated stippling is to have a mesh with fixed connectivity
(topology) while the vertices of the mesh (or a subset of the
vertices of the mesh) change in position over time, changing
the shape of the model.

A
B

C
C

A

B

Fig. 12

THE POINTS ON THE SURFACE OF THE TRIANGLE ARE DEFINED USING

BARYCENTRIC COORDINATES, THAT IS, THEY ARE DEFINED RELATIVE TO

THE VERTICES OF THE TRIANGLE. AS A RESULT, THE POINTS ON THE

SURFACE MOVE ALONG WITH THE TRIANGLE AS THE POSITION OF ITS

VERTICES CHANGES.

To attach the stipples to the surface of the mesh during
the animation, we redefine the positions of the points in the
hierarchy using barycentric coordinates (see Figure 12). In
the barycentric coordinate system the position of the points
contained on the plane of a triangle are defined with respect
to the vertices of the triangle, which is very convenient for
stippling, because we can move the vertices of the triangular
mesh on 3D space, and then recompute the positions of the
stipples as a function of these vertices.

Since normally there are several stipples per face, each point
in the stipple set contains an index to the face of the model
where the point lies (the host face for that stipple) and the
barycentric coordinates of the point within that face. At each
animation step, the point coordinates are recomputed using
the barycentric coordinates and the vertex positions of the
host face. The effect achieved is that stipples behave like an
elastic texture printed on the models surface. In addition, each
particle’s normal has to be updated after each deformation
step, using either gouraud shading or flat shading.

During morphing, the polygons are normally not propor-
tionally distorted, and this has an effect on the overall stipple
distribution. If the stipples radii are left untouched during the
animation, the overall point density becomes a function of
the mesh distortion that occurs during morphing, i.e. point
density increases on those regions of the model that shrink and
decreases in those regions that expand, which is interesting
for illustrating mesh deformation per se. However, if the
stippling is to be kept as a function of shading and scale,

A AB B

Fig. 13

ON THE LEFT, TWO SAMPLE POINTSA AND B ARE GIVEN A RADIUS

VALUE WHICH IS THE AVERAGE DISTANCE TO ITS RELEVANT NEIGHBOURS

(THE DARK POINTS). ON THE RIGHT, WE OBSERVE THE TWO POINTS WITH

THEIR NEW AVERAGE RADIUS AFTER THE DISTORTION HAS TAKEN PLACE.

SINCE THE DISTANCE TO THEIR NEIGHBOURS HAS CHANGED AFTER THE

TRANSFORMATION, THE VALUES FOR THE RADIUS OF THE STIPPLED

POINTS ALSO CHANGE, BUT IN DIFFERENT PROPORTION FOR EACH POINT.

as originally postulated, a more elaborate solution is required
which compensates the effect of the distortion. In regions
that shrink, less stipples should be drawn and in regions that
expand, more stipples should come up, assuming illumination
conditions and viewpoint are kept constant while the distortion
takes place.

To allow stipple particles to adapt to the new polygon
shape while maintaining an appropriate shading and scale,
we compute the radius of each stipple as the average of a
small set of neighbouring points (2 to 4 points) for each frame.
The set of neighbouring points is defined when the point set
is generated. (see Section IV). By defining the neighbouring
points in barycentric coordinates, the position and the radius
of the stipples can adapt to mesh deformations. The point
density varies proportionally to the distance from the stipple
to the original neighbouring points, as illustrated in figure
13. While this introduces an additional computational effort
during rendering, this step ensures that the stipple hierarchy
originally computed is kept consistent as deformations take
place. Ideally, more stipples should be generated when the
surfaces are expanded, and some could be eliminated when the
surfaces shrink. This, however puts additional overhead to the
rendering process, which is not necessary if all the stipples that
are potentially needed are generated in a preprocessing stage.
Videos of stippling for animated models can be observed at
http://isgwww.cs.uni-magdeburg.de/∼oscar/.

VI. CONCLUSIONS

We have presented a system to produce frame-coherent
stippled drawings of 3D polygonal models adapted for real-
time interaction and for producing animations. Our system
ensures frame-coherence at the stipple level, i.e. every stipple
shown in a frame of a video sequence appears in a corre-
sponding location on the next frame. This is achieved by
creating a point hierarchy where the points are fixed on the
surface of the input model. The point hierarchy is created
by applying mesh subdivision and mesh simplification to the
input model to obtain seamless levels-of-detail. Higher levels-

http://isgwww.cs.uni-magdeburg.de/~oscar/


REAL-TIME ANIMATED STIPPLING — [MERUVIA, FREUDENBERG, STROTHOTTE] 9

Fig. 14

FRAMES FROM OUR ANIMATION ”U PSETTING THE CROCODILE”.

of-detail, produced by mesh subdivision, are used to fill-
in the darker regions of the model. Lower levels of detail,
produced by mesh simplification, permit removal of vertices
at levels-of-detail lower than that of the input model and
are used to stipple lighter shaded regions in the image. In
the system presented, new stipples always fill-in the spaces
between existing stipples, and smoothly blend-in or fade out of
the image according to illumination and viewing parameters.
Randomization and projection operators are used to improve
the distribution of the stipples and ensure these are always
mapped to the surface of the input model, respectively. In
addition, the point hierarchy is used to produce frame-coherent
stippled animations of polygonal models by setting the points
in barycentric coordinates (i.e., as a function of the polygonal
mesh). For static models, the point hierarchy is used in a
vertex program that allows the real-time rendering of models
in the stippling style. The point hierarchy can be used to render
models in new styles related to pointillist rendering and view-
dependent particle systems.

Our system makes use of a number of techniques which
can be individually optimized to improve the overall aspect
of our renditions and the system’s efficiency. For instance, the
point distribution can be improved by using an algorithm that
redistributes the vertices on the surface of the input model
as part of preprocessing, and different approaches for mesh
simplification can be tried to improve the selection of vertices
while constructing the point hierarchy. Another optimization
worthwhile investigating is determining the visibility of the
original model’s faces in the first pass and rendering only
stipples belonging to visible faces. A simple visibility test
would be back-face elimination for closed objects. This should
reduce the number of stipples tested by roughly one half.
An even more aggressive method would be to employ the
occlusion test provided by some graphics hardware (e. g., the
GeForce 3). Both options would require to break up the model
into parts with associated stipple sets. If all polygons in a
certain part are back-facing or invisible, the part’s stipples
do not have to be submitted to the graphics pipeline at all.
A screen-based level of detail approach can also be used to
determine which points should be rendered according to the
projection of the input polygons on the surface of the model,
as mentioned in Section V-B. As future work, we want to
develop an efficient algorithm to fill in specific areas of the

model with stipple particles when the user zooms at the model
and the point hierarchy has been exhausted.
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