
Real-Time Stroke Textures Bert Freudenberg
Institut für Simulation und Graphik

Otto-von-Guericke-Universität Magdeburg
Universitätsplatz 2, 39106 Magdeburg, Germany

bert@isg.cs.uni-magdeburg.de

Shading in line drawings is expressed by varying the
stroke width or density of strokes covering an object’s
surface. In their pioneering work, Winkenbach and
Salesin introduced the concept of “prioritized stroke
textures” to the emerging field of non-photorealistic
rendering1. Despite the advances in processing power
in the years since then, the sheer number of lines to
draw prevents this method from running in real-time. A
real-time approach for hatching was presented by Lake
et al.2, which chooses from a set of textures based on
the brightness at vertices, subdividing polygons if
necessary. However, the method is very CPU-heavy
and requires many polygons.

Our new technique uses per-pixel-shading graphics
hardware to implement non-photorealistic shading.
The texture-combining facilities accessible via OpenGL
on NVIDIA GeForce and ATI Radeon cards provide the
flexibility necessary to vary the line width or number of
strokes per area.

To indicate shading by variable-width hatching, a 3D
halftone pattern is created as texture T and compared
at every pixel with the target intensity I, creating black
or white pixels3. Halftoning, however, yields
unsatisfying results for interactive applications
because of the computer screen’s limited resolution.
To smoothen the harsh transition from white to black
we instead take the difference of T and I and scale it by
some constant c > 1. After clamping the result to the
[0,1] range we get a mostly black and white output
while still preserving a few gray levels (see Figure 1).

I

T

1 – 4 (1 – (T + I))

Figure 1: Lighting-dependend stroke width

We follow a similar approach with stroke textures.
Strokes are drawn on different layers. To facilitate
one-pass rendering, all stroke layers are composited

into the texture T in a pre-processing step, using a
different gray-level for each layer (Figure 2). At
run-time, all layers needed to visually approximate the
intensity I are selected for drawing, employing the
same combiner operations as introduced above (see
Figure 3).

������� � ��	 
��� ��
�� ���� ����� ����� �����! #"�$%'&()

Figure 2: Stroke map construction

Figure 3: Real-time stroke textures

There are many ways to extend the basic idea of
stroke map shading. Lightmaps can be used to vary
the amount of detail drawn on a surface. With bump
maps, individual strokes can be made sensitive to
lighting. Shadows can be rendered in additional
passes. We are working on integrating all these into
our interactive line drawings.

Our method does not require any additional CPU work
at run-time. The configurability or even
programmability of recent graphics hardware is a very
powerful device to achieve non-standard looks. We are
looking forward to seeing more visually rich interactive
rendering styles emerge in the future.

References

1. G. Winkenbach and D. H. Salesin. Computer-generated
pen-and-ink illustration. In Proc. SIGGRAPH 94, pages
91–100, 1994.

2. A. Lake, C. Marshall, M. Harris, and M. Blackstein.
Stylized rendering techniques for scalable real-time 3d
animation. In Proc. NPAR 2000, pages 13–20, 2000.

3. P. Haeberli and M. Segal. Texture mapping as a
fundamental drawing primitive. In Fourth Eurographics
Workshop on Rendering, pages 259–266, 1993.

SIGGRAPH 2001 Technical Sketch


